3.12.60 \(\int \frac {(b d+2 c d x)^2}{a+b x+c x^2} \, dx\) [1160]

Optimal. Leaf size=49 \[ 2 d^2 (b+2 c x)-2 \sqrt {b^2-4 a c} d^2 \tanh ^{-1}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right ) \]

[Out]

2*d^2*(2*c*x+b)-2*d^2*arctanh((2*c*x+b)/(-4*a*c+b^2)^(1/2))*(-4*a*c+b^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {706, 632, 212} \begin {gather*} 2 d^2 (b+2 c x)-2 d^2 \sqrt {b^2-4 a c} \tanh ^{-1}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b*d + 2*c*d*x)^2/(a + b*x + c*x^2),x]

[Out]

2*d^2*(b + 2*c*x) - 2*Sqrt[b^2 - 4*a*c]*d^2*ArcTanh[(b + 2*c*x)/Sqrt[b^2 - 4*a*c]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 706

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*d*(d + e*x)^(m - 1
)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] + Dist[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1))), In
t[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[
2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] &
& RationalQ[p]) || OddQ[m])

Rubi steps

\begin {align*} \int \frac {(b d+2 c d x)^2}{a+b x+c x^2} \, dx &=2 d^2 (b+2 c x)+\left (\left (b^2-4 a c\right ) d^2\right ) \int \frac {1}{a+b x+c x^2} \, dx\\ &=2 d^2 (b+2 c x)-\left (2 \left (b^2-4 a c\right ) d^2\right ) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x\right )\\ &=2 d^2 (b+2 c x)-2 \sqrt {b^2-4 a c} d^2 \tanh ^{-1}\left (\frac {b+2 c x}{\sqrt {b^2-4 a c}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 47, normalized size = 0.96 \begin {gather*} d^2 \left (4 c x-2 \sqrt {-b^2+4 a c} \tan ^{-1}\left (\frac {b+2 c x}{\sqrt {-b^2+4 a c}}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b*d + 2*c*d*x)^2/(a + b*x + c*x^2),x]

[Out]

d^2*(4*c*x - 2*Sqrt[-b^2 + 4*a*c]*ArcTan[(b + 2*c*x)/Sqrt[-b^2 + 4*a*c]])

________________________________________________________________________________________

Maple [A]
time = 0.70, size = 52, normalized size = 1.06

method result size
default \(d^{2} \left (4 c x +\frac {2 \left (-4 a c +b^{2}\right ) \arctan \left (\frac {2 c x +b}{\sqrt {4 a c -b^{2}}}\right )}{\sqrt {4 a c -b^{2}}}\right )\) \(52\)
risch \(4 c \,d^{2} x +\sqrt {-4 a c +b^{2}}\, d^{2} \ln \left (-2 \sqrt {-4 a c +b^{2}}\, c x -\sqrt {-4 a c +b^{2}}\, b -4 a c +b^{2}\right )-\sqrt {-4 a c +b^{2}}\, d^{2} \ln \left (2 \sqrt {-4 a c +b^{2}}\, c x +\sqrt {-4 a c +b^{2}}\, b -4 a c +b^{2}\right )\) \(109\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*d*x+b*d)^2/(c*x^2+b*x+a),x,method=_RETURNVERBOSE)

[Out]

d^2*(4*c*x+2*(-4*a*c+b^2)/(4*a*c-b^2)^(1/2)*arctan((2*c*x+b)/(4*a*c-b^2)^(1/2)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^2/(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [A]
time = 1.36, size = 132, normalized size = 2.69 \begin {gather*} \left [4 \, c d^{2} x + \sqrt {b^{2} - 4 \, a c} d^{2} \log \left (\frac {2 \, c^{2} x^{2} + 2 \, b c x + b^{2} - 2 \, a c - \sqrt {b^{2} - 4 \, a c} {\left (2 \, c x + b\right )}}{c x^{2} + b x + a}\right ), 4 \, c d^{2} x - 2 \, \sqrt {-b^{2} + 4 \, a c} d^{2} \arctan \left (-\frac {\sqrt {-b^{2} + 4 \, a c} {\left (2 \, c x + b\right )}}{b^{2} - 4 \, a c}\right )\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^2/(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

[4*c*d^2*x + sqrt(b^2 - 4*a*c)*d^2*log((2*c^2*x^2 + 2*b*c*x + b^2 - 2*a*c - sqrt(b^2 - 4*a*c)*(2*c*x + b))/(c*
x^2 + b*x + a)), 4*c*d^2*x - 2*sqrt(-b^2 + 4*a*c)*d^2*arctan(-sqrt(-b^2 + 4*a*c)*(2*c*x + b)/(b^2 - 4*a*c))]

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 99 vs. \(2 (48) = 96\).
time = 0.15, size = 99, normalized size = 2.02 \begin {gather*} 4 c d^{2} x + d^{2} \sqrt {- 4 a c + b^{2}} \log {\left (x + \frac {b d^{2} - d^{2} \sqrt {- 4 a c + b^{2}}}{2 c d^{2}} \right )} - d^{2} \sqrt {- 4 a c + b^{2}} \log {\left (x + \frac {b d^{2} + d^{2} \sqrt {- 4 a c + b^{2}}}{2 c d^{2}} \right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)**2/(c*x**2+b*x+a),x)

[Out]

4*c*d**2*x + d**2*sqrt(-4*a*c + b**2)*log(x + (b*d**2 - d**2*sqrt(-4*a*c + b**2))/(2*c*d**2)) - d**2*sqrt(-4*a
*c + b**2)*log(x + (b*d**2 + d**2*sqrt(-4*a*c + b**2))/(2*c*d**2))

________________________________________________________________________________________

Giac [A]
time = 1.14, size = 57, normalized size = 1.16 \begin {gather*} 4 \, c d^{2} x + \frac {2 \, {\left (b^{2} d^{2} - 4 \, a c d^{2}\right )} \arctan \left (\frac {2 \, c x + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{\sqrt {-b^{2} + 4 \, a c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*d*x+b*d)^2/(c*x^2+b*x+a),x, algorithm="giac")

[Out]

4*c*d^2*x + 2*(b^2*d^2 - 4*a*c*d^2)*arctan((2*c*x + b)/sqrt(-b^2 + 4*a*c))/sqrt(-b^2 + 4*a*c)

________________________________________________________________________________________

Mupad [B]
time = 0.07, size = 81, normalized size = 1.65 \begin {gather*} 2\,d^2\,\mathrm {atan}\left (\frac {b\,d^2\,\sqrt {4\,a\,c-b^2}+2\,c\,d^2\,x\,\sqrt {4\,a\,c-b^2}}{b^2\,d^2-4\,a\,c\,d^2}\right )\,\sqrt {4\,a\,c-b^2}+4\,c\,d^2\,x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*d + 2*c*d*x)^2/(a + b*x + c*x^2),x)

[Out]

2*d^2*atan((b*d^2*(4*a*c - b^2)^(1/2) + 2*c*d^2*x*(4*a*c - b^2)^(1/2))/(b^2*d^2 - 4*a*c*d^2))*(4*a*c - b^2)^(1
/2) + 4*c*d^2*x

________________________________________________________________________________________